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Bayesian Inductive Inference. . 

DIRECT PROBABILITIES 

Fig. 1. What is the probability of getting r 

heads in 10 flips of a fair coin, Pr(r heads110 

flips of a fair coin)? Deductive logic tells 

us that the probability in question is given 

by Nr heads/N, where N is the number of 

all possible sequences of heads and tails 

that the 10 flips can generate and Nr heads 

is the number of those sequences that 

contain r heads (in any order). To obtain a 
10 

numerical answer, note that N = 2 and that 

Nr heads = 10!/(10 - r)! r!. Thus Pr(r heads110 

flips of a fair coin) = [10!/(10 - r)! r!]/21Â° 

to the whole subject is provided by the probability formulations of Bayes and Laplace. 
Bayes' ideas (published in 1763) were used very successfully by Laplace (181 2) 
but were then allegedly discredited and largely forgotten until they were rediscov- 
ered by Jeffreys (1939). In more recent times they have been expounded by Jaynes 
and others. Here we present an introductory glimpse of the Bayesian approach. We 
then illustrate how Bayesian ideas, and developments such as the maximum entropy 
method, are affecting data analysis and thoughts on instrument design at the Manuel 
Lujan, Jr. Neutron Scattering Center (LANSCE). 

Everyday games of chance are governed by deductive logic. For example, if we 
are told that a fair coin is flipped ten times, we can deduce accurately the chances 
that all ten flips produced heads, or that nine produced heads and one produced tails, 
. . . or that all ten flips produced tails (Fig. 1). Turning to neutron scattering, let's 
suppose we know the scattering law for a particular sample and the geometry of 
the diffractometer, the efficiencies of the detectors, and so on. Then we can predict 
the chances of observing a certain number of neutron counts in any given detector. 
These examples are in the realm of deductive logic, or pure mathematics: Given the 
rules of a "game," we can predict the chances of various outcomes. 

Most scientists, however, are concerned with the more difficult inverse prob- 
lem. Given that a coin of unknown origin was tossed ten times and the result was 
seven heads, was it a fair coin or a weighted one? Further, what is the best estimate 
of the bias-weighting of the coin and what is the confidence in the prediction? If we 
are now given more data on the coin, how should we incorporate the new informa- 
tion and how do our prediction and confidence level change? This type of problem 
is in the realm of inductive logic, plausible reasoning, or inference: Having seen the 
outcome of several "moves" in a game, we want to infer the rules governing that 
game. Returning to neutron scattering, let's suppose we have recorded so many neu- 
tron counts in various detectors and wish to infer the scattering law for the sample. 
Like all problems in inductive logic, this problem has no clear-cut answer. The most 
we can hope to do is make the "best" inference based on both the experimental evi- 
dence and any prior knowledge we have at hand, reserving the right to revise our po- 
sition if new information comes to light. Around 500 B.C. Herodotus said much the 
same thing: "A decision was wise, even though it led to disastrous consequences, if 
the evidence at hand indicated it was the best one to make; and a decision was fool- 
ish, even though it led to the happiest possible consequences, if it was unreasonable 
to expect those consequences." 

Bayes' Theorem 

Bayes' theorem, which was actually written down in its present-day form by 
Laplace and not Bayes, is the cornerstone of scientific inference. It provides the 
bridge between the inductive logic we require and the deductive logic we know how 
to use. Its status is somewhat akin to the position of Newton's second law of mo- 
tion in mechanics: seemingly tame and innocuous, but powerful enough to analyze 
a wide.variety of problems when the relevant details and assumptions are given. In 
mechanics we may be taught that s = - g t 2  is the relationship between the vertical 
distance s that a body falls under a gravitational field g after a time t when released 
from rest at t = 0. We may also be told that the speed of sound v through a gas with 
pressure P and density p is given by v2 = P/p. Although these two formulae look 
quite different and apply to different situations, it is satisfying to know that both of 
them are derived from the same physical law: Force is equal to the rate of change 
of momentum. Similarly the Bayesian approach to probability and statistics provides 
the logical foundation for the conventional teaching of statistics we are given as un- 
dergraduates. A Bayesian analysis often leads us to use the same procedure as ad- 
vocated by the "cookbook" school of statistics, but it forces us to state clearly the 
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assumptions (usually forgotten) made in going from the fundamental rule for induc- 
tive inference (Bayes' theorem) to the particular statistical prescription we use. 

But what is Bayes' theorem? Simply stated, it says that the conditional prob- 
ability of A (being true) given B (is true), written as Pr(AlB), is proportional to the 
conditional probability of B given A times the probability of A: 

Bayes' theorem is easy to prove for problems in which A and B are "macroscopic" 
events that can be realized in a large number of equally probable "microscopic" 
ways. In such problems the probability of an event is the number of ways in which 
the event can occur divided by the total number of possibilities. For example, sup- 
pose the space of "microscopic" possibilities is all the possible sequences of heads 
and tails that can occur if a fair coin is flipped ten times. Since the coin is fair, each 
of the possible sequences is equally probable. "Macroscopic" event A might then be 
the event that the total number of heads was less than four, and B might be the event 
that a head was obtained on the third and seventh tosses. Figure 2 shows a schematic 
representation of the space of all "microscopic" possibilities and the portions of that 
space occupied by realizations of event A and event B. Now, let N be the total num- 
ber of possibilities, NA be the number of possibilities resulting in event A, NB be the 
number of possiblities resulting in event B,  and NAB be the number of possibilities 
resulting in both event A and event B. Then the probabilities of the various outcomes 
of interest become 

Pr(A)=NA/N, R(B)=NB/N,  P~(AIB)=NB/NB, and Pr(BIA)=NAB/NA. 

We can then write the probability of both A and B occurring, R(A, B), in two differ- 
ent ways: 

R(A, B) = NABIN = Pr(A1B) x Pr(B) = Pr(B [A) x Pr(A). (2) 

Bayes' theorem, as stated in Eq. 1, follows immediately from the two expressions for 
Pr(A, B) in Eq. 2, provided we associate l /  Pr(B) in Eq. 2 with the proportionality 
constant in Eq. 1. 

Although this proof is simple, the full implications of Bayes' theorem do not 
become apparent until we discover that the theorem applies equally well to cases in 
which A and B are any arbitrary propositions and the probabilities assigned to them 
represent merely our belief in the truths (or otherwise) of the propositions. This re- 
markable generalization, which is certainly not obvious, was proved by Cox (1946) 
while he was considering the rules necessary for logical and consistent reasoning. 

Suppose we have a set of propositions. For example, a: It will rain tomorrow; 
b: King Harold died by being hit in the eye with an arrow during the battle of Hast- 
i n g ~  in 1066 A.D.; c: This is a fair coin; d: This coin is twice as likely to come up 
heads as tails; and so on. The minimum requirement for expressing our relative be- 
liefs in the truth of the various propositions in a consistent fashion is that we rank 
them in a transitive manner. That is to say, if we believe proposition a more than b 
and b more than c, then we necessarily believe a more than c. Such a transitive rank- 
ing can easily be obtained by assigning a real number to each of the propositions in a 
manner so that the larger the numerical value associated with a proposition, the more 
we believe it. Cox went on to put forward two more axioms for logical, consistent 
reasoning: (1) If we first specify our degree of belief that A is true and then specify 
how much we believe B is true given that A is true, then we have implicitly defined 
our degree of belief for both A and B being true; and (2) If we specify how much 
we believe that A is true, then we have implicitly specified how much we believe 
that A is false. Cox showed that if we accept these remarkably mild desiderata, then 

SAMPLE SPACE AND PROBABILITIES 

Fig. 2. The sample space occupied by all 

N equally probable microscopic possibilities 

is depicted schematically here as a circle of 

area N. The microscopic possibilities result 

in various macroscopic events, such as A and 

B. The number of possibilities that result in 

A and the number of possibilities that result 

in B are represented by portions of the circle 

with areas NA and NB (hatched regions). The 

probability of A, Pr(A), is given by the fraction 

NA/N;  similarly, Pr(B) is given by the fraction 

NB/N.  The probability of A and B, Pr(A, B), 

is given by N A , ~ / N ,  where NA,B, represented 

as an area of overlap between NA and NB, is 

the number of possibilities that result in both 

4 and B. 
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INDIRECT PROBABILITIES: 
THE BIAS WEIGHTING OF A COIN 

Fig. 3. (a) Shown here are three of the 

prior probability distributions that might 

be assigned to H, the bias weighting of 

a coin: the "ignorant" (or uniform) prior, 

which reflects the belief that all values of H 

(0 :< H <  ̂ 1) are equally probable; a "fair" 

prior, which reflects a belief that the coin is 

likely to have both a head and a tail and to be 

unbiased, or, in other words, a belief that the 

most likely value of H is 0.5; and a "crooked" 

prior, which reflects a belief that the coin is 

likely to be double-headed or double-tailed, 

or a belief that the most likely values of H 

are 1 or 0. The series of graphs in (b) shows 

how the posterior probability distributions 

corresponding to the priors in (a) evolve 

as the number of data increases. The data 

were generated by using a random-number 

generator in a computer and a value of 0.2 for 

the bias weighting. Note that, as the number 

of data increases, all the posteriors converge 

to a delta function centered at H = 0.2. In 

other words, as the experimental evidence 

increases, the assumptions embodied in the 

priors have less effect on our estimate of H. 

(a) The Priors (b) Evolution of Posteriors 

2 

1 

there must be a mapping that transforms the real numbers we have associated with 
the various propositions (to express our beliefs in them) to another set of positive real 
numbers that obeys the usual rules of probability theory: 

"Fair" 
Prior 

/-\ 
\ -: / \ 

/ \ 

/ "Ignorant" \\ 
/ Prior .. \ 

. / \ ..a. ... \ - . . .  "Crooked Prior. ..ye 
/ -.........-.- \ 

0-" I '. 

Pr(A, B ) = Pr(A [ B ) x Pr(B ) and Pr(A) + Pr(A) = 1, 

0 0.5 1 

where A represents the proposition that A is false. In other words, any method of 
logical and consistent reasoning (no matter what the context) must be equivalent to 
the use of ordinary probability theory, where the probabilities represent our beliefs or 
state of knowledge about various propositions or hypotheses in the Bayes-Laplace- 
Jeffreys sense. 

Bayes' theorem itself is just a simple corollary of these rules, but what does 
it really mean and why is it so powerful? Let us return to the coin-flipping prob- 
lem as a concrete but simple example. Again we are told that a coin was flipped n 
times and came up heads r times, but we don't know whether the coin was fair. Our 
problem is to infer the coin's bias-weighting for heads, call it H .  We will say that 
H = 0 represents a double-tailed coin (that is, a coin such that a head never appears), 
H = 0.5 represents a fair coin (that is, a coin such that its head is likely to come up 
as often as its tail), H = 1 represents a double-headed coin, and all other values of H 
(between 0 and 1) correspond to some intermediate bias-weighting. 

To carry out the inference, we need to specify our beliefs in the set of proposi- 
tions that, given the data, the value of H lies in a narrow range between h and h+Sh, 
where h can take on values between 0 and 1. In terms of a probability distribution 
for H ,  Pr(H = hl{data}), or simply Pr(H [{data}), we write 

lim Pr(h < H <, h + Sh 1 {data}) = Pr(H [ {data})dh. 
S h - 0  

Thus Pr(H /{data}), known as the posterior probability distribution (or simply the 
posterior), represents our state of knowledge about the bias-weighting for heads in 
light of the data. The value of h at which the posterior is a maximum gives our best 
estimate of the bias-weighting, and the spread of the posterior about the maximum 
gives our confidence in that estimate. If the posterior is sharply peaked, we are sure 
about our estimate; if it is broad, we are fairly uncertain about the true value of H .  

In order to determine Pr(H [{data}), we need to use Bayes' theorem, 

Pr(H 1 {data}) IX Pr({data} IH ) x Pr(H ), 

which relates the posterior to two other probability distributions, one of which can be 
"calculated" from the data and the other "guessed." 

The probability distribution Pr(H = h); or simply Pr(H), which also is defined 
for 0 <, h <: 1, represents our state of knowledge about the value of H before we 
are given the data. It is thus called the prior probability distribution (or simply the 
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prior). In the coin-tossing problem, if we are completely ignorant about the coin, we 
would assign a uniform prior, Pr(H) = constant = 1 for all values of h between 
0 and 1, to indicate that a priori all possible values of H are equally probable. If 
we do have other prior information, perhaps the results of previous data, then this 
information should be reflected in the nonuniform character of Pr(H). (Actually our 
statement of Bayes' theorem should read Pr(H 1 {data}, I )  oc Pr({data} IH , I )  x Pr(H [I) ,  
where I represents other prior information or prior assumptions.) Figure 3a shows 
three possible assignments for Pr(H), each reflecting a different assumption about the 
coin: the uniform, or ignorant, prior; a prior that assumes the coin is most likely to 
be double-headed or double-tailed; and a prior that assumes the coin has a head and a 
tail and is probably fair. 

Having specified our prior, we need now to consider the other probability dis- 
tribution in Bayes' theorem, Pr({data}\H), which reflects the nature of the "experi- 
ment." This probability distribution can be computed because it involves deductive 
logic. It is called the likelihood function because it tells us how likely it is that we 
would have obtained the data that we did if we had been given the value of H .  For 
our problem we are told that a coin was flipped n times and came up heads r times. 
If we assume that the data are independent (that is, the outcome of one flip did not 
affect the result of another) and that the bias-weighting is H ,  then the likelihood 
function is simply a binomial distribution: 

Pr({data}lH) = "C,. x H r  x (1 - H)"-', 

where "C,. = n!/r!(n - r)! is the number of ways of picking r objects (independent 
of order) from a choice of n. (Figure 1 shows such a binomial distribution.) 

Multiplying Pr(H) and Pr({data} IH), we obtain the posterior Pr(H 1 {data}), 
which summarizes all that we can infer about the value of H given the data. Fig- 
ure 3b shows how the posterior for each of the three priors in Fig. 3a changes as we 
are given more and more data. The data in this example were generated by using a 
random-number generator in a computer and setting H to 0.2. We find that as we ob- 
tain more data, we become more confident in our prediction for the inferred value of 
H (that is, the width of each posterior decreases) and our prior state of knowledge, 
as expressed in Pr(H), becomes less important (that is, no matter what our prior as- 
sumptions were, the posteriors converge to the same answer when enough data are 
available). 

The power of Bayes' theorem is that it effectively provides the only consistent 
bridge between the inductive logic (or indirect probabilities) required for scientific 
inference and the deductive logic (or direct probabilities) that we know how to use. 
Generalizing, we see that Bayes' theorem encapsulates the process of "learning": 

Pr("hypothesis"1 {data}, I )  oc Pr({data} ["hypothesis", I ) x Pr("hypothesis"l1 ), 
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where the "hypothesis" is the quantity that we wish to infer (the bias-weighting of a 
coin, for example, or the neutron scattering law for some sample) and I represents 
any prior knowledge we may have about the "hypothesis." The prior probability dis- 
tribution, Pr("hypothesis", I ) ,  reflects our knowledge (or ignorance) about the "hy- 
pothesis" before we obtained the data. This prior state of knowledge is modified by 
the likelihood function, Pr({data}["hypothesisW, I) ,  which encodes the nature of the 
"experiment" and involves the use of deductive logic, to yield our posterior proba- 
bility distribution, Pr("hypothesis"~ {data}, I ) ,  which represents our state of knowl- 
edge about the "hypothesis" after we have obtained the data. What we infer about 
some quantity of interest depends not only on the data we have but also on what we 
know or assume about it a priori! If the data are accurate, abundant, and sensitive 
to the quantity of interest, then the likelihood function will be sharply peaked and 
will dominate the posterior probability distribution. No matter what our prior state of 
knowledge, the data force us to the same conclusion. If the data are inaccurate, few 
in number, or insensitive to the quantity of interest, then the posterior will depend 
crucially on our prior. In other words, if the data do not tell us very much, then our 
state of knowledge after we have obtained the data will be governed largely by our 
state of knowledge (or ignorance) before the experiment. 

Just as Newton's second law of motion is central to all classical mechanics, 
Bayes' theorem provides the fundamental rule for all logical and consistent induc- 
tive inference. Many statistical tests and procedures can be derived, justified, or at 
least understood from Bayes' theorem when one states the relevant assumptions and 
details about the situation under consideration. Model fitting, least squares, maximum 
likelihoods, singular-value decomposition, the maximum entropy method, Tikhonov 
regularization, Fourier filtering, the x2 test, the F test, Student's t test, and other sta- 
tistical procedures for analyzing data can all be seen as suitable courses of action for 
different choices or assumptions about three things: the prior information I ,  which 
can even determine what we mean by "hypothesis"; the prior probability distribution, 
Pr("hypothesis"~I); and the nature of the experiment, which is enshrined in the likeli- 
hood function, Pr({data} ["hypothesis", I ) .  

The Maximum Entropy Method 

The data-analysis method known as maximum entropy (MaxEnt) arises in the 
context of a specific but commonly occurring problem-that of making inferences 
about positive and additive distributions. The neutron scattering law S (Q, E )  for a 
sample is an example of such a positive and additive distribution. It is positive be- 
cause S (Q , E)dQdE is proportional to the number of neutrons scattered with momen- 
tum transfer between Q and Q + dQ and energy transfer between E and E + dE. 
It is additive because the number of neutrons scattered into a large AQAE inter- 
val is equal to the sum of the neutrons scattered into the small dQdE intervals that 
compose the large AQAE interval. Other examples of positive and additive dis- 
tributions include probability distribution functions, the radio-frequency brightness 
function of an astronomical source, the electron density in a crystal, the intensity of 
incoherent light as a function of position in an optical image, and so on. (By con- 
trast, the amplitude of incoherent light is positive but not additive.) Given only the 
information I that the quantity of interest is a positive and additive distribution f ,  
what should we assign as the prior probability distribution Pr (f I/)? The assignment 
of a prior is often a difficult problem. Bayes' theorem tells us that the prior is a nec- 
essary and integral part of making a scientific inference, but the theorem does not tell 
us how to assign it. Methods that seem to avoid the use of a prior merely make an 
implicit choice (usually of a uniform distribution) rather than state an explicit choice. 
(Luckily, as mentioned above, the prior does not matter very much when we have 
"good" data.) 
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The choice of a prior usually involves somewhat obscure arguments and fre- 
quently involves a consideration of the allowed transformation groups that specify 
our ignorance about the quantity of interest. For example, consider the problem of 
estimating the length L of a biological molecule. What prior Pr(L) should be as- 
signed to express complete ignorance about the value of L before we have carried out 
any measurements? Well, if we are really ignorant about the size of the molecule, 
then we should assign the same prior for the numerical value of L irrespective of 
whether we make the measurement in meters, inches, cubits, or whatever. The vari- 
able L would then be a so-called scale parameter. To express our complete igno- 
rance about the value of a scale parameter, we say that the prior must be invari- 
ant under a change of scale in the measurement units. Mathematically we require 
that Pr(L)dL = Pr((3L)d(f3L) for all values of /3 2 0, leading us to the assignment 
Pr(L) oc 1/L, or a uniform prior for log L : Pr(1og L) = constant. 

The appropriate prior for a positive and additive distribution is, again, not im- 
mediately obvious. Many different types of arguments, however, including logical 
consistency, information theory, coding theory, and combinatorial arguments, lead us 
to believe that the prior is of a rather special form: 

Here the (prior) information I assumes only that f is positive and additive, and S is 
the generalized Shannon-Jaynes entropy: 

In this general expression for entropy, m(x) is a Lebesgue measure on x, the space 
of the distribution, and a is a dimensional constant (initially unknown). We will say 
more about what this entropic prior means (and the value of a )  a little later, but let 
us continue by considering m(x) further. 

In the absence of any data, the posterior becomes directly proportional to the 
prior, and our best estimate off is given by the maximum of the entropy function 
S , which occurs at f (x) = m(x). The function m(x) is therefore a default model 
(that is, the solution to which f will default unless the data say otherwise) and can 
be thought of as representing our prior state of knowledge, or ignorance, about f .  
The default model is usually taken to be uniform (that is, constant), but the use of a 
nonuniform m(x) can be important for such difficult problems as protein crystallogra- 
phy or for introducing spatial correlations across the positive and additive distribution 
we want to infer. IPwe know that f is normalized, so that f f (x)dx is fixed, and if 
the Lebesgue measure is uniform (m(x) = constant), then the entropy formula above 
reduces to the form 

which is the form of the entropy familiar from statistical mechanics. 
The other quantity we need in order to make an inference about the distribution 

f is the likelihood function Pr({data}l f ,  I). The likelihood function incorporates the 
information about the experiment, whether it is a neutron-scattering experiment, a 
nuclear-magnetic-resonance experiment, a radio-astronomy experiment, or whatever. 
It relates the quantity of interest to the data we have, thereby encoding details about 
the type of experiment and the accuracy of the measurements. 

Let us consider the common case in which the data are independent (one mea- 
surement does not affect another) and are subject to additive Gaussian noise. The 
likelihood function then takes the form 
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where x2 is the familiar misfit statistic, which measures how well a trial distribution 
f fits the actual data: 

Here Dk is the kth datum (say the number of neutron counts in the kth bin), C T ~  is 
the noise, or expected error, in that datum (for a neutron-scattering experiment, a = 
a), and Fk is the value for the kth datum that a trial distribution f would have 
produced in the absence of any noise. The noise in the neutron counts, though really 
described by a Poisson distribution, is approximated well by a Gaussian distribution 
because the number of counts is usually large (2 10). Thus the usual model fitting 
corresponds to assuming the likelihood function in Eq. 4 and maximizing that func- 
tion to obtain the best "fit" to the data (that is, implicitly assuming a uniform prior so 
that the posterior becomes directly proportional to the likelihood function). 

According to Bayes' theorem we must combine Eq. 3, the entropic prior, with 
the likelihood function of Eq. 4 to find the posterior probability distribution for f :  

Then, given the data and only the prior knowledge that f is a positive and additive 
distribution, our best estimate off is given by the distribution that maximizes this 
posterior probability distribution. Since the exponential is a monotonic function, we 
obtain the solution by maximizing aS - ix2 (a general algorithm to do this is given 
in Bryan and Skilling 1984). This procedure can be interpreted as maximizing the 
entropy S subject to some constraint on the value of the misfit statistic x2,  where 
the initially unknown constant a is seen as a Lagrange multiplier. Hence the name 
maximum entropy method. The method is illustrated schematically in Fig. 4. 

In past applications of the maximum entropy method, the constant a was chosen 
such that x2 = N ,  where N is the number of data. This choice seems intuitively rea- 
sonable since any proposed distribution f should give data consistent with those actu- 
ally measured, as defined by the constraint that x2 < = N .  The MaxEnt method was 
thus seen as choosing a distribution f that, while "fitting the data," had the most en- 
tropy. More recent thinking (Skilling and Gull 1989), however, carries the Bayesian 
logic one step further: Since a is unknown, it becomes just one more parameter that 
needs to be estimated in the same sense that we are trying to estimate f .  This ap- 
proach, which leads to a slightly more complicated (but less ad hoc) criterion for the 
choice of a, has the advantage that the increased rigor allows us to automatically de- 
termine a, the level of the noise, or expected error, in the measured data if it is not 
known. We leave these and other recent advances, including a discussion of practi- 
cal reliability estimates of the inferred distribution f ,  to the avid reader (see Further 
Reading) and continue to pursue the more traditional approach to the MaxEnt method 
and its applications. 

The Meaning of Maximum Entropy 

Well, we have talked about the entropic prior, but what is its significance and 
what does it mean? To answer this question, we will use two very simple examples. 
The first, known as the kangaroo problem, is an example of having accurate but in- 
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sufficient data. Nevertheless the problem is small enough that common sense tells 
us what constitutes a "sensible" solution. It will be shown that the MaxEnt choice, 
unlike several commonly used alternatives, concurs with our common sense. We will 
then use a second example, known as the monkey argument, to try to give a more 
general interpretation of the MaxEnt solution. 

The Kangaroo Problem. We have said that in the MaxEnt method we choose, as 
our best estimate of a positive and additive distribution f, the f that agrees with the 
data and has the most entropy. This method of choosing a solution by maximizing 
some function of the desired distribution is known as regularization. The Shannon- 
Jaynes entropy is an example of a regularizing function, but several others are also 
commonly used. We will follow Gull and Skilling (1984) in using the kangaroo 
problem to demonstrate our preference for the choice of the Shannon-Jaynes entropy 
over the alternatives. The kangaroo problem, a physicists' perversion of a formal 
mathematical argument (Shore and Johnson 1980), shows that the Shannon-Jaynes 
entropy is the only regularizing function that yields self-consistent results when the 
same information can be used in different ways (for example, the choice of coordi- 
nate system should not matter). The kangaroo problem is as follows. 

Information: One-third of all kangaroos have blue eyes, and one-third of all 
kangaroos are left-handed. 

Question: On the basis of this information alone, what proportion of kangaroos 
are both blue-eyed and left-handed? 

Clearly, we do not have enough information to know the correct answer: All 
solutions of the type shown in the 2 x 2 contingency table of Fig. 5a agree with the 
data and thus constitute the feasible set of solutions. Without additional information, 
each solution is equally likely because they all fit the data exactly. Figure 5b shows 
three among the myriad of feasible solutions: namely, the one with no correlation 
between being blue-eyed and left-handed and the ones with the maximum positive 
and negative correlation. Although the data do not allow us to say which is the cor- 
rect answer, our common sense compels us to choose the uncorrelated solution if 
we are forced to make a choice. That is to say, unless we have prior knowledge to 
the contrary, we do not expect that knowing the eye color of a kangaroo will tell us 
anything about whether the kangaroo is left-handed or right-handed. Thus our best 
estimate is that one-ninth of the kangaroos will be blue-eyed and left-handed. 

Table 1 shows the results of selecting the solution by maximizing four com- 
monly used regularizing functions. Note that the integral in the formula for the en- 
tropy, for example, has been replaced by a summation because the space of the dis- 
tribution, x, is not continuous but discrete. In fact, it consists of just four pixels- 
the four boxes in the 2 x 2 contingency table. For this very simple example, where 

THE MAXIMUM ENTROPY METHOD 

Fig. 4. Suppose that we are trying to find 

the "best" estimate for some positive and 

additive distribution f(x). Suppose further 

that the'hypothesis space of f is defined 

by the values of f specified on a grid finely 

discretized with respect to x into N pixels. 

In other words, the hypothesis space of f is 

the N-dimensional space whose coordinate 

axes are the set {fi}, where f j  is the value 

of f at pixel j. Shown here is a schematic 

two-dimensional section, namely the fmfn 

plane, through the hypothesis space. Plotted 

(in red) are contours along which -y2, (twice) 

the logarithm of the likelihood function, is 

constant; the set {fie} for which x2 < EN 

(the number of data) compose the feasible 

set of distributions allowed by the data. 

Also plotted (in green) are contours along 

which the entropy S (the logarithm of the 

prior probability distribution) is constant; the 

entropy is a maximum at the default model 

f = m (where m is a Lebesgue measure on 

the hypothesis space) and rapidly approaches 

-00 as any part of f becomes negative. 

The MaxEnt solution is that f for which the 

posterior probability distribution is maximum, 

that is, the f for which 9/9fj(aS - lx2)  = 0. 

The blue line indicates the trajectory of the 

MaxEnt solution as the value of the Lagrange 

multiplier a goes from oo to 0; the blue star 

represents the traditional choice of a, which 

satisfies the condition that y2 = N. 
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TRUTH TABLES FOR 
THE KANGAROO PROBLEM 

(a) General Feasible Solution (b) Three Specific Solutions 

Fig. 5. (a) This truth table illustrates the 

general feasible solution to the kangaroo 

problem. That solution is obtained by letting 

x = f, be the fraction of kangaroos that are 

blue-eyed and left-handed, where 0 < x < i. 
Then the fractions corresponding to the other 

contingencies (f2, f3, and f s )  can be expressed 

in terms of x. (b) These truth tables illustrate 

three specific solutions derived by setting 

x to -, which corresponds to no correlation 

between being blue-eyed and left-handed, 

and by setting x to 1 or 0, which correspond 

respectively to maximum positive or negative 

correlation between the traits. 

Left-Handed Left-Handed 

No Correlation 

common sense tells us the "best" answer when faced with insufficient (but noise- 
free) data, it is only the Shannon-Jaynes entropy that yields a sensible answer! (Al- 
though we have considered only four regularizing functions, it can be shown that the 
Shannon-Jaynes entropy is the only one that has this desired property.) 

Before going on to consider a more general interpretation of the MaxEnt choice, 
it is worth commenting on the frequently heard statement that in data analysis (or 
image reconstruction) positivity is the important constraint, not how you enforce it. 
For large problems that statement is very often true. Our small kangaroo problem, 
however, magnifies the differences among the regularizing functions and shows that 
we get more from MaxEnt than just positivity. The way we have set up the prob- 
lem in Fig. 5a has the positivity constraint already built in, but it is still not suffi- 
cient to make a choice on the basis of the data we are given. The f regularizing 
function, for example, which for the kangaroo problem corresponds to the "Tikhonov 
with positivity" that some people seek, does not yield the same solution as our com- 
mon sense~only  MaxEnt does! Many general image-processing methods (both ad 
hoc and sound) often give similar results. The similarity merely reflects the fact that 
the prior probability distribution does not usually matter very much when the data are 
"good." However, if we assume only that the quantity of interest is a positive and 
additive distribution and ask what is the appropriate choice for the prior, the answer 
is the entropic prior. 

The Monkey Argument. Our common sense recommended the uncorrelated so- 
lution to the kangaroo problem because, intuitively, we knew that it was the most 
noncommittal choice. The data did not rule out correlation, but, without actual evi- 
dence, it was a priori more likely that the genes controlling handedness and eye color 
were on different chromosomes than on the same one. Crudely speaking, if we con- 
sider randomly scattering two genes among eight chromosomes, they are seven times 
more likely to land on different chromosomes than on the same one. Although we 
cannot usually appeal to specific knowledge such as what is known about genes and 
chromosomes, we can use the monkey argument (Gull and Daniel1 1978) to see more 
generally that the MaxEnt choice is the one that is maximally noncommittal about the 
information we do not have. 

The monkey argument can again be thought of as a physicists' perversion of 
formal mathematical work, that of Shannon (1948) showing that entropy is a unique 
measure of "information content." The words "information content" are being used 
here in the information-theory sense and have somewhat the opposite sense of their 
everyday use! We might better think of entropy as a measure of uncertainty (rather 
than as a measure of information) because uncertainty is closer to the idea of the lack 
of order that characterizes entropy. However, a system that has more entropy has a 
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Left-Handed 
T F 

Left-Handed 
T F 

Maximum Positive Correlation Maximum Negative Correlation 

greater degree of randomness, and its description requires more information (more 
bits in a computer). It is in this sense, then, that entropy is a measure of information. 

The monkey argument presents the MaxEnt solution in graphic terms. Imagine 
a large team of monkeys who make images, or positive and additive distributions, 
by randomly throwing small balls of light at a rectangular grid. After a while, the 
grid is removed and replaced by another and so on. Eventually, the monkeys will 
generate all possible images, and many copies of each one. If we want an image of 
an object about which we have some experimental data, we can reject most of the 
monkey images because they give data that are inconsistent with the experimental 
measurements. Those images that are not rejected constitute the feasible set. If we 
are to select just one image from this feasible set as representing our best estimate 
of the object, the image that the monkeys generate most often would be a sensible 
choice. Because our hypothetical team of monkeys is presumed to have no particular 
bias, such a choice represents the image that is consistent with the measured data but, 
at the same time, is most noncommittal about the information we do not have. This 
preferred image is the MaxEnt solution, because the entropy is just the logarithm of 
the number of ways in which the image could have been generated (and, hence, the 
number of times it was). 

Applications of MaxEnt at LANSCE 

MaxEnt has been used successfully in image reconstruction in a wide variety 
of fields (see, for example, Gull and Skilling 1984). A small selection of its diverse 
applications, shown in Fig. 6, include forensic deblurring, radio astronomy, medical 
tomography, and nuclear-magnetic-resonance spectroscopy. We are now starting to 
use this powerful technique, and Bayesian ideas in general, to enhance the analysis of 
neutron-scattering data at LANSCE. 

The Filter-Difference Spectrometer. The first example of the use of MaxEnt at 
LANSCE is the analysis of data from the Filter-Difference Spectrometer, or FDS. 
This example has the form of a standard convolution problem. That is, the data are 
related to the quantity of interest through a blurring process, so that they are a blurred 
(and noisy) version of what we want. 

Our own eyes produce such a convolution, or blurring. Because the pupils of 
our eyes have a finite size, we do not see point sources of light as infinitesimal dots 
but as small fuzzy disks. (The angular size of the disk is roughly A/d, where A is 
the wavelength of the light and d is the diameter of the pupil.) If two point sources 
of light are so close that the disks overlap, we can no longer distinguish them as sep- 
arate entities. Such blurring, response, resolution, or point-spread functions occur al- 

Table l 

REGULARIZATION-FUNCTION 
SOLUTIONS OF 
KANGAROO PROBLEM 

Listed here are values of x (fraction of kan- 

garoos that are blue-eyed and left-handed) 

derived by maximizing four commonly used 

regularizing functions. Of the four only the 

Shannon-Jaynes entropy, - E // log //, 
yields a value for x that agrees with our 

common sense, which tells us that, in the 

absence of relevant data, the two traits are 

most likely to be uncorrelated. 

Regularizing 

Function A Correlation 

E f j l o g f j  0.111 ..., or $ None 

-Ef 0.083. . ., or Negative 

E log fj 0.13013 Positive 

Edj 0.12176 Positive 

Los Alamos Science Summer 1990 



Bayesian Inductive Inference. . . 

SOME APPLICATIONS OF THE 
MAXIMUM ENTROPY METHOD 

Fig. 6. The examples presented here, which 

are reproduced through the courtesy of 

J. Skilling and S. F. Gull, show how the 

maximum entropy method can be used to 

clarify the information extracted from a variety 

of data. 

MaxEnt image of radio-frequency 
(5-gigahertz) emissions from the 
supernova remnant Cassiopeia A 

Comparison of (top) conventional Fourier 
reconstruction and (bottom) MaxEnt recon- 
struction of a nuclear-magnetic-resonance 
spectrum 

most universally in all experiments. The resolution functions of particular interest in 
neutron-scattering experiments arise from various aspects of the experimental setup, 
such as the finite size and temperature of the moderator and the finite angle of col- 
limation of the neutron beam. In the case of the FDS, the major contribution comes 
from the transmission spectrum of the polycrystalline filters used to select for record- 
ing those inelastically scattering neutrons with certain final energies. 

For those not familiar with the idea of a convolution, or the performance of 
MaxEnt, we start with a simple simulated example computed on a grid of 128 points. 
Suppose that the "true" object, or neutron scattering law, consists of two spikes on 
the left separated by a small plateau and a broader peak on the right, as shown in 
Fig. 7a. Also suppose that a noisy data set (Fig. 7c) is generated by first convolving 
the scattering law with a resolution function (Fig. 7b) that is similar to the transmis- 
sion spectrum of the filters used in the FDS and then adding to the resulting blurred 
signal a small background count and random noise. In a convolution each point of 
the object (pixel) is replaced with a copy of the resolution function scaled by the 
"height" of the object at that point; the data are then the sum of all the scaled copies 
of the resolution function. As can be seen from Figs. 7a and 7c, a large single spike 
can give much the same data as a smaller broad peak. Mathematically, using matrix 
and vector notation, we can write the "experiment" as 

Here d is the data vector, the matrix 0 is the convolution operator (Ojk = rk-,, 
where r is the resolution function), f is the scattering law, b is the background, and 
(T is the root-mean-square value of the random noise ((02) = dk). Given the data 
set and a knowledge of the resolution function and background, we wish to infer the 
underlying scattering law. A simple way of performing the deconvolution is to ap- 
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(a) Test Scattering Law (d) Direct Inverse 

(b) Resolution Function 

(c) Simulated Data 

(e) "Smoothed" Direct Inverse 

(f) MaxEnt Reconstruction 

ply the inverse convolution operator 0 '  to d - b by using Fourier transforms. This 
procedure is equivalent to making the assumption that the prior is uniform, Pr(f) = 
constant, and determining the maximum-likelihood solution. Unfortunately, the in- 
verse solution may not exist. For example, the maximum-likelihood solution may not 
be unique because of missing data. Furthermore, even when the inverse does exist, 
it produces a reconstruction of the scattering law (Fig. 7d) that has a lot of high- 
frequency ringing (wiggles). To overcome this difficulty, it is common practice to 
use a smoothed (or slightly blurred) version of the direct inverse, a procedure known 
as Fourier filtering (Fig. 7e). In the grand scheme of things, Fourier filtering can be 
regarded as an example of singular-value decomposition. An alternative approach 
is to use the fact that the scattering law is a positive and additive distribution and 
hence choose an entropic prior (Pr(f\I) oc exp(aS)) and thus obtain the MaxEnt solu- 
tion shown in Fig. 7f. We find that the maximum entropy method has suppressed the 
level of the artifacts without sacrificing as much detail in the reconstruction as does 
Fourier filtering. 

Now, let us turn from simulated data to real data. The FDS is an instrument 
used to perform molecular rotational-vibrational spectroscopy with neutrons rather 
than with photons, as in infrared or Raman spectroscopy. Figure 8a shows data taken 
with a beryllium filter imposed between the sample and the detector. Those data 

DECONVOLUTION 
OF SIMULATED DATA 

Fig. 7. The power of the maximum entropy 

method is illustrated by its application to a 

simulated data set. The simulated data set 

(c) was obtained by convolving a test scat- 

tering law (a) with an instrumental resolution 

function (b) and then adding a small back- 

ground and random noise. (The instrumental 

resolution function shown in (b) is similar 

to the transmission spectrum of the filters 

used in the Filter-Difference Spectrometer at 

LANSCE). The series (d), (e), and (f) com- 

pares reconstructions, or deconvolutions, of 

the mock scattering law produced by three 

methods. 

Los Alamos Science Summer 1990 



Bayesian Inductive Inference.. . 

DECONVOLUTION OF INELASTIC- 
NEUTRON-SCATTERING DATA 

Fig. 8. Shown in (a) are inelastic neutron- 

scattering data obtained with the Filter- 

Difference Spectrometer at LANSCE. Such 

data are the basis for deducing the energy 

levels of the molecular vibrations and ro- 

tations excited in a sample by the incident 

neutrons. (Here the sample is hexamethy- 

lene tetramine at 15 kelvins; its well-known 

rotational-vibrational spectrum is used to 

calibrate the energy-transfer values deduced 

from the recorded times of flight and the 

energy-cutoff points of the filters.) The raw 

data shown in (a) are a convolution of the true 

rotational-vibrational spectrum of the sample 

with the transmission spectrum of a beryllium 

filter located between the sample and the 

detector. (That transmission spectrum is 

similar to the resolution function shown in 

Fig. 7b.) Shown in (b) is the "filter-difference" 

spectrum, a hardware deconvolution of the 

data in (a) derived by subtracting the raw data 

in (a) from raw data obtained with a beryllium 

oxide filter. (The transmission spectrum of 

a beryllium oxide filter differs from that of a 

beryllium filter mainly in being slightly shifted 

in energy.) The filter-difference spectrum is 

inverted relative to the raw data plot because 

the abscissa in (a) is (essentially) the time 

of flight of the scattered neutrons whereas 

the abscissa in (b) (and (c) and (d)) is the 

energy transferred to the sample. Shown in 

(c) is the MaxEnt reconstruction of the data in 

(a). The MaxEnt reconstruction and a filtered 

inverse, or "Mezei," reconstruction (dots) are 

compared in (d). 

(a) Raw Data (Beryllium Filter) (b) "Filter-Difference" Spectrum 

Channel Number 

(c) MaxEnt Reconstruction 

Energy Transfer (meV) 

Energy Transfer (cm-l) 

(d) MaxEnt and Mezei Reconstructions 

Energy Transfer (cm-l) 

show the effects of the sharp edge and long decaying tail of the transmission spec- 
trum of the filter (see Fig. 7b). The earliest method used to remove the blurring 
produced by such a resolution function is a hardware solution. Two data sets are 
collected, one consisting of the scattered neutrons transmitted through a beryllium 
filter and the other consisting of the scattered neutrons transmitted through a beryl- 
lium oxide filter. The transmission spectra of the two filters have almost the same 
shape, but their sharp energy cutoffs are slightly offset. Therefore, the data set ob- 
tained with one filter differs from the data set obtained with the other filter mainly in 
being shifted in energy by a small amount. When the two data sets are subtracted, 
the contributions from the long decaying tails (and background) tend to cancel, and 
only the significant features defined by the sharp rising edges remain. Figure 8a 
shows raw data obtained with only the beryllium filter plotted in data channels cor- 
responding to increasing neutron time of flight. Figure 8b shows the correspond- 
ing "filter-difference" spectrum plotted as a function of energy transfer. The filter- 
difference spectrum is inverted relative to the data plot because increasing time of 
flight is equivalent to decreasing energy transfer. 

Given only the data obtained with the beryllium filter and knowledge of the fil- 
ter's transmission spectrum and the background, the deconvolution can be carried out 
mathematically (in software) by using the maximum entropy method. The MaxEnt 
reconstruction thus obtained is shown in Fig. 8c and is compared in Fig. 8d with a 
conventional reconstruction (due to Mezei) that can be interpreted as a filtered in- 
verse. As expected, the MaxEnt reconstruction is an improvement over both the 
filter-difference and the Mezei deconvolutions in that it shows finer detail and fewer 
noise artifacts. The improvement is obvious but not dramatic because the data have 
good statistical accuracy. Noisier data causes the filtered inverse solution to deterio- 
rate much more rapidly than the MaxEnt solution. 
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THE FOURIER PHASE PROBLEM 

The Low-Q Diffractometer. The next application of the maximum entropy method 
involves the analysis of data that reflect the aggregation of biological macromolecules 
in solution. These data were taken on the Low-Q Diffractometer, a small-angle neu- 
tron-scattering (SANS) instrument useful for studying structures with dimensions 
ranging from 10 to 1000 angstroms. The spatial distribution of particles in a Sam- 
ple (including their size, shape, and location) is related to the neutron scattering law 
through a Fourier transform-in general, a complex quantity. (The elements of the 0 
matrix for a Fourier transform are of the form Ojk = exp(i27rjk/N), where i2 = - 1 
and N is the number of points in the discrete Fourier transform.) The neutron counts 
we measure are, of course, given by the Fourier intensities (or a blurred and noisy 
version thereof). We are thus brought face-to-face with the dreaded Fourier phase 
problem! The Fourier phase problem entails trying to make an inference about some 
quantity of interest given information about only the amplitudes (but not the phases) 
of its Fourier transform. It is a notoriously difficult problem, well known in x-ray 
crystallography, because the many local maxima of the likelihood function make it 
hard for us to find the global maximum of the posterior probability. The gravity of 
the situation is illustrated by Fig. 9. Luckily, we are not interested in determining 
the relative locations of the particles but only the number of particles of a given size 
and shape. Thus our problem is analogous to the problem in x-ray crystallography of 
determining not the electron-density map but only the autocorrelation (or Patterson) 
function, for which the Fourier intensities alone are sufficient. 

The particles under study are involved in the digestion and transport of fats. My 
biologist colleague at LANSCE, Rex Hjelm, introduced me to the problem by say- 
ing: "Your body is mostly water. If you visit your favorite ice-cream parlor, then 
the fat in the ice cream will form a greasy blob at the bottom of your stomach and 
you will soon die!" He then told me that bile salts, produced in the liver, had hy- 

Fig. 9. Image (c) is a Fourier reconstruction 

obtained by using the Fourier phases of image 

(a) and the Fourier amplitudes of image (b); 

image (d) is a Fourier reconstruction obtained 

by using the Fourier phases of image (b) and 

the Fourier amplitudes of image (a). These 

two reconstructions demonstrate that most 

of the Information in a Fourier transform is 

contained in the phases rather than in the 

amplitudes. 
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DIGESTION OF FATS 

Fig. 10. The digestion of dietary fats begins 

with their emulsification by complexes of 

bile-salt and lecithin molecules. Bile salts 

(glycocholate and taurocholate) are polar 

derivatives of cholesterol. Shown in (a) 

are the structural formula and a schematic 

diagram of glycocholate. (Polar groups 

are denoted in the schematic diagram by 

circles.) Taurocholate differs in that the 

terminal carboxyl group (CO;) is replaced by 

the group H2CÃ‘803 Although glycocholate, 

say, is itself an effective emulsifier, complexes 

of glycocholate and the lipid lecithin are, for 

reasons not yet known, even more effective. 

Shown in (b) are the structural formula and a 

schematic diagram of lecithin, or phosphatidyl 

choline. Aiding the digestion of fats is not the 

only physiological function of lecithin; it also 

is a major constituent of the lipid bilayers that 

compose biological membranes. 

(a) Glycocholate 

0 
II 40 

C\ ,C\ ,C-N-CH2-C\o- 
H O C C H  

u 
Rigid Planar Steroid 

Ring Structure 

(b) Lecithin 
0 
I I 

HnC-(CH2)i4- C - 0 -  CH2 
I 

Fatty-Acid Hydrophilic Head 

Double Carbon Bond 

drophylic heads and hydrophobic tails (Fig. lOa). "So the body dumps in some bile 
salts to act as detergents," I remarked, somewhat relieved. "No, that's what an engi- 
neer would do!" came the reply. For reasons that we do not fully understand, nature 
uses a conglomerate of bile salts and the fat lecithin (Fig. lob) to begin the digestion 
process. 

An understanding of the action of bile salts in lipid digestion and in the trans- 
port of liver products such as cholesterol has potential applications in industrial pro- 
cesses and in the development of drug-delivery systems and model membranes. As 
a step in this direction, Hjelm et al. (1990) have been investigating the nature of par- 
ticle growth in aqueous solutions of lecithin and the bile salt glycocholate. Figure 
1 la  shows SANS data sets for three increasingly dilute solutions. Hjelm asked the 
following question: If I assume that the particles in the sample can be modeled as 
cylinders of uniform density, what is my "best" estimate of their size distribution, 
given the data and a knowledge of the experimental setup? Since SANS data are not 
sensitive to fine structure, the sharp edges of the cylinders are of little consequence; 
all that we are really assuming is that the particles are "blobs" of uniform density de- 
fined by a length and a diameter. Moreover, the fact that the distribution of particle 
sizes is a positive and additive quantity means that the relevant prior for the distri- 
bution of particle sizes is an entropic prior! Figure 1 l b  shows the particle-size dis- 
tributions derived by using MaxEnt on the data in Fig. 1 la. The distribution for the 
highest lipid concentration indicates the presence of only a single type of particle, 
roughly globular, with a diameter of about 50 angstroms. As the sample is diluted, 
evidence for a second type of particle appears, a rod-like structure with a diameter of 
about 50 angstroms and a length of about 100 angstroms, or twice the original length. 
Even greater dilution leads to the appearance of even more elongated particles with 
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(a) Small-Angle Neutron-Scattering Data 

Momentum Transfer, 0 (A") 
(b) Cylinder-Size Distributions 

50 100 150 

Cylinder Height, H (A) 

a length of about 170 angstroms, or three to four times the original length. These re- 
sults lead us to believe that particle growth occurs through aggregation of preformed 
subunits with a size of about 50 angstroms (which corresponds nicely to the thick- 
ness of lecithin bilayers) rather than through the aggregation of individual bile-salt or 
lecithin molecules. 

This example shows that the data need not bear any visual resemblance to the 
information extracted; in other words, MaxEnt is a method for data analysis, or scien- 
tific inference, and not just image enhancement. 

The Constant-Q Spectrometer. Our last example involves data from the Constant- 
Q Spectrometer (CQS), an instrument designed to investigate phonons and magnons 
i n  single-crystal samples. The example illustrates a more advanced use of MaxEnt- 
multichannel entropy. This method is needed for convolution problems in which we 
want to determine not only the (sharp) scattering law of interest but also a broad, un- 
known background signal. We will begin with a simple simulation to illustrate multi- 
channel entropy and then demonstrate its use on real data from the CQS. 

For our simulation we convolve the scattering law of Fig. 7a with the resolution 
function of Fig. 7b (scaled down by a factor of about 10) and then add a large back- 
ground, assumed to be unknown, to generate the noisy data set shown in Fig. 12a. 
To analyze these data we use the technique of two-channel entropy. We assume that 
the unknown background h is also a positive and additive quantity and is fairly broad 
compared with the scattering law f .  What we are attempting to do is an example of 
multichannel entropy because we are trying to make our best inference about several 
different "images" simultaneously. In this case we have only two channels: one for 
the background and the other for the scattering law. We set up two image channels, 

PARTICLE GROWTH 

Fig. 11. Information about the sizes of 

glycocholate-lecithin complexes in an aque- 

ous solution can be obtained by analysis of 

small-angle neutron-scattering data for the 

solution. Shown in (a) are such data (Hjelm 

et al. 1990) for increasingly dilute solutions. 

(The concentrations indicated are total con- 

centrations of glycocholate plus lecithin.) 

The corresponding particle-size distributions, 

shown in (b), were derived by assuming that 

the complexes are adequately represented 

by cylinders of radius R and height H and 

then using the maximum entropy method to 

determine the most probable distribution of 

cylinder sizes. Note that increasing dilution 

is accompanied by the appearance of popula- 

tions of cylinders whose radii do not change 

significantly but whose heights increase by 

approximately integral multiples. 
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(a) Simulated Data 

(b) MaxEnt Reconstruction: Background 

(c) MaxEnt Reconstruction: Signal 

TWO-CHANNEL DECONVOLUTION 
OF SIMULATED DATA 

Fig. 12. (a) Two-channel entropy is an example 

of an advanced use of the maximum entropy 

method. It allows deconvolution of data into 

two components, such as a scattering law 

with sharp features and a relatively featureless 

background. Application of the two-channel 

entropy method to the simulated data in (a), 

which were generated by convolving the scat- 

tering law and the resolution function shown 

in Fig. 7a and Fig. 7b and then adding a large, 

unknown background, yields the background 

and scattering-law reconstructions shown, 

respectively, in (b) and (c). 

fl and f2. One channel is allowed to have only broad structure (by construction); the 
other is permitted the full resolution of the 128-pixel grid. We also arrange the prob- 
lem so that the "entropic cost" of putting structure in the broad channel is very low 
relative to the cost of putting structure in the high-resolution channel. What do we 
mean by entropic cost? Recall that the absolute maximum of entropy occurs when 
f is the same as the default model m. But as f deviates from m, in order to become 
consistent with the data, the entropy decreases, and that decrease in entropy is what 
we mean by entropic cost. Thus by making the entropic cost of putting structure in 
the broad channel relatively low, we ensure that if a broad distribution can account 
for the data, it will appear in the broad channel. If sharp structure is required, it can 
appear only in the high-resolution channel. We identify the high-resolution channel 
with the scattering law and the broad channel with the unknown background. Carry- 
ing out this procedure (for details see Sivia 1990), we obtain the MaxEnt reconstruc- 
tions for the background and scattering law shown in Figs. 12b and 12c. Although 
the image of Fig. 12c is not as good as that of Fig. 7f, it is still a very impressive 
reconstruction in light of the given data (compare Fig. 7c with Fig. 12a!). 

Finally, we show the application of this two-channel entropy algorithm to real 
data on the inelastic scattering of neutrons from phonons and magnons in a sample 
of iron. The data (Yethiraj et al. 1990) are shown in Fig. 13a as a function of the ex- 
perimental variables: time of flight and detector angle. The data suffer from a com- 
bination of broadening and an unknown background signal (in addition to \/N noise) 
that obscures the scattering law of interest. The MaxEnt reconstruction of the signal, 
or high-resolution, channel (Fig. 13b) shows a dramatic improvement in both the de- 
tail seen in the scattering law and in the reduction of background artifacts. When the 
scattering law is plotted in terms of the physically meaningful coordinates of energy 
and momentum transfer (Fig. 13c), we can easily identify the dispersion curves for 
the magnon and phonon excitations characteristic of iron. 

Instrument Design 

The examples of the use of MaxEnt given in the last section are all cases of do- 
ing the "best" with the data we have. Usually that is all we can do. The instrumen- 
tation and hardware already exist at facilities like LANSCE, and often the only free- 
dom a user has to improve the quality of the data is to increase its statistical accuracy 
by collecting data for a longer time. Let us suppose, however, that we are going to 
build a new facility, or just a new spectrometer. How should we design it to get the 
"best" data? This is an important question since a new facility can cost a hundred 
million dollars or more, and even a single spectrometer can cost a million or two! 

Silver, Sivia, and Pynn (1989) have addressed this question from a heuristic 
viewpoint and have also suggested a quantitative answer based on elementary signal- 
to-noise ratio arguments from a power-spectrum error analysis. They posed the fol- 
lowing question: Given that the neutron-scattering data are usually a blurred and 
noisy version of the scattering law we want, what are the optimal characteristics of 
the instrumental resolution (blurring) function? Conventional wisdom suggests that 
the most important characteristic of the resolution function is its width: the wider the 
resolution function, the poorer the quality of the data in the sense that it is more dif- 
ficult to determine reliably the underlying scattering law. Such thinking is based on a 
visual, or "what-you-see-is-what-you-get," consideration of the data. A more formal 
analysis based on statistical inference, or image processing, leads to the conclusion 
that the overall shape of the resolution function is more important than its width. 

We now outline the formal Bayesian approach to the question of instrument 
design; the algebra is presented in Sivia (1990). We will cast the problem in the 
same way as did Silver et al. and arrive at the same results; what we add here is the 
Bayesian rationale for their results. The real advantage of the Bayesian approach is 
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TWO-CHANNEL DECONVOLUTION 
OF INELASTIC-NEUTRON- 
SCATTERING DATA 

Fig. 13. Application of the two-channel entropy 

algorithm to the inelastic-neutron-scattering 

data for iron shown in (a) (Yethiraj et al. 1990) 

yields the deconvolved "signal" channel 

shown in (b). Transformation of the lines in 

(b) to the physically meaningful coordinates of 

energy transfer and Oparallei (the component 

of the momentum transfer parallel to the 

Incident neutron beam) reveals both branches 

of a magnon and some phonons (c). 

Intensity 

Magnon Branches 

80 - 

- 

40 - Phonons 
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(a) Test Scattering Law (b) Resolution Functions 

(c) MaxEnt Reconstructions 

x 

(d) Fourier Transforms of Resolution Functions 

THE FIGURE-OF-MERIT PROBLEM: 
RESOLUTION FUNCTIONS 
WITH THE SAME FWHM 

Fig. 14. Application of the maximum entropy 

method to data sets obtained by convolving 

the test scattering law in (a) with one or 

the other of the two resolution functions in 

(b) yields the reconstructions shown in (c). 

Both resolution functions have the same full 

width at half maximum (FWHM) and the same 

integrated intensity and hence have the same 

conventional figure of merit. Nevertheless, 

the reconstruction corresponding to the 

sharp-edged resolution function more nearly 

matches the original scattering law than 

does the reconstruction corresponding to the 

Gaussian resolution function. Also shown, in 

(d), is the Fourier transform of each resolution 

function. As discussed in the text, the Fourier 

transform of a resolution function, and not its 

full width at half maximum, is most relevant 

to defining a versatile figure of merit. 

its generality; an almost identical analysis can be used to address questions about 
experimental design in many other contexts (not just convolutions). Moreover, our 
conclusions are relevant not only to neutron-scattering experiments but also to any 
other type of experiment involving some element of an instrumental resolution. 

The first step in any data analysis is the formulation of the precise question we 
wish to answer. Formally, we must define the space of possible answers, or choose 
the hypothesis space. In the case of neutron scattering, we may say that we wish to 
know the scattering law of our sample, but how is the scattering law to be described? 
If we know (or assume) that the scattering law consists of a single Lorentzian, for 
example, then we have a three-dimensional hypothesis space defined by the position, 
height, and width of the Lorentzian. If, on the other hand, we have no functional 
form for the scattering law, then we might digitize it into a large number M of pix- 
els, whereupon we have an M -dimensional hypothesis space defined by the flux in 
each pixel. However, the fact that our best estimate of the scattering law depends not 
only on the data but also on our choice of hypothesis space limits our ability to pro- 
vide a universal figure of merit for instrument design. Nevertheless, we will be able 
to suggest at least a versatile figure of merit, one that is meaningful for many types 
of problems. But first let's analyze the problem using Bayesian logic. 

Once we have chosen the hypothesis space, we can assign a probability distri- 
bution over it to indicate our relative beliefs in the various possible scattering laws. 
The assignment we make before conducting the experiment is, of course, the prior, 
and Bayes' theorem tells us how the prior is modified by the experimental data, 
through the likelihood function, to yield the posterior. We also know that the position 
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(a) Simulated Data (Narrow Gaussian) 

x 

(c) MaxEnt Reconstruction (Narrow Gaussian) 

(b) Simulated Data (Wide Gaussian) 

x 

(d) MaxEnt Reconstructrion (Wide Gaussian) 

s 
-. 10,000 Times More Counts 

-. 100 Times More Counts :: / . . 

of the maximum in the posterior gives us our best estimate of the scattering law and 
that the width, or spread, of the bump in the posterior around the maximum gives us 
a measure of the reliability of our estimate. Both, of course, depend on our choice of 
hypothesis space and on our assignment of the prior probability distribution, but they 
also depend on the data. The question of how to optimize instrument design can thus 
be stated as follows: How should we choose the instrumental parameters so that the 
resulting data give us the most reliable estimate of the scattering law? 

Since Bayes' theorem tells us that the data affect our estimate of the scattering 
law only through the likelihood function, we need to look at its sharpness, or spread. 
The sharper the likelihood function, the greater the "information content" of the ex- 
periment in the sense that the data impose a more severe constraint on what the scat- 
tering law could be. 

Let us begin by considering a very simple situation. Suppose we know that the 
scattering law consists of a single delta-function excitation, A6(x - xo), of known 
magnitude A and unknown postion xo. In other words, we have a one-dimensional 
hypothesis space defined by XO. Suppose also that the experimental data are the re- 
sult of a convolution between this scattering law and a Gaussian resolution function 
T exp(-x2/2w2). The height T of this Gaussian resolution function is determined 
by the length of time for which the data are collected, and its width w is some func- 
tion of the instrumental parameters, such as flight-path length and collimation angle. 
The question now is: What restrictions do the data impose on the value of xo? The 
width of the likelihood bump, viewed in the one-dimensional space of XQ, gives us 
the uncertainty in XQ, 6x0, allowed by the data. After some algebra we find that 6x0 
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THE FIGURE-OF-MERIT PROBLEM: 
RESOLUTION FUNCTIONS 
OF SIMILAR SHAPE 

Fig. 15. Shown in (a) and (b), respectively, 

are noisy data obtained by convolving the 

scattering law shown in Fig. 14a with a narrow 

Gaussian resolution function and another 

Gaussian resolution function ten times wider. 

Deconvolution of (a) and (b) yields (c) and the 

dashed curve in (d), respectively. Also shown 

in (d) are deconvolutions of data sets with 100 

times (solid curve) and 10,000 times (dotted 

curve) the number of counts shown in (b). 

Contrary to conventional wisdom, increasing 

the number of data by a factor of 100 does 

not compensate (in terms of recovering sharp 

structure) for an increase in FWHM by a factor 

of 10. 
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A LIKELIHOOD FUNCTION 
IN A TWO-DIMENSIONAL 
HYPOTHESIS SPACE 

Fig. 16. Suppose that the scattering law of 

interest is characterized by specific values of 

only two parameters, A and XQ. (An example 

of such a scattering law is a delta function 

of unknown amplitude and position.) The 

likelihood function Pr({data} [A, xo) is then a 

bump in a twodimensional hypothesis space. 

Shown here schematically in that hypothesis 

space are contours along which the logarithm 

of Pr({data} [A, xo) is constant. The shape 

of the likelihood function can be described 

either by a covariance matrix or by the 

eigenvectors and eigenvalues of the logarithm 

of the likelihood function. The elements of 

the covariance matrix tells us the expected 

uncertainties allowed by the data in our 

estimates of A and a and how our estimate 

of one affects our estimate of the other. The 

eigenvectors, which specify the directions of 

the principal axes of the likelihood bubble, tell 

us which properties, or linear combinations, 

of A and xo can be determined independently. 

The eigenvalues, which are proportional to 

the widths of the likelihood function in the 

directions of the eigenvectors, tell us how 

reliably each independent property can be 

estimated. 

Maximum Likelihood Solution 

Princi~al Axes 

depends on the instrumental design, enshrined in the resolution-function parameters T 
and w, in the following manner: ( ( 6 x 0 ) ~ )  oc W I T .  The inverse of this quantity can be 
used as a figure of merit and has been quoted in the neutron-scattering literature: 

Total Number of Neutrons T 
Conventional Figure of Merit = ;, 

where FWHM is the full width of the resolution function at half maximum and the 
total number of neutrons detected is proportional to Tw. 

We now show, by means of the examples presented in Figs. 14 and 15, that, al- 
though the conventional figure of merit is the correct answer to the question posed 
above, it is quite unsuitable for general use. Figure 14 presents the MaxEnt recon- 
structions derived from two data sets obtained by convolving a test object with one 
or the other of two resolution functions. Even though the resolution functions have 
identical figures of merit according to the equation above, the reconstruction from the 
data set obtained by convolution with the sharp-edged resolution function is clearly 
far superior to the reconstruction from the data set obtained by convolution with the 
Gaussian resolution function. But the figure of merit above was based on a Gaussian 
resolution function, you might complain, and so is not valid here. Figure 15 coun- 
ters that argument by showing the MaxEnt reconstructions derived from two data sets 
obtained by convolving a test object with one or the other of two Gaussian functions 
whose FWHMs differ by a factor of 10. According to conventional thinking, the fig- 
ures of merit can be equalized by increasing the total number of counts for the wide 
Gaussian by a factor of 100. But Fig. 15 shows instead that, to recover the sharpest 
features, the number of neutrons counts must be increased by many orders of magni- 
tude! 

Next, we move on to consider a slightly more complicated case. Let the situ- 
ation be exactly the same as before, except that now the scattering law is known to 
consist of a single delta function of not only unknown position but also unknown 
magnitude. That is, we have a two-dimensional hypothesis space, defined by the 
magnitude A and position XQ of the delta function. Again, we want to know what re- 
strictions the data impose on the value of A and XQ.  The likelihood function is now a 
bump in a two-dimensional space, as illustrated schematically in Fig. 16. To describe 
the shape of this probability bubble, we need at least three numbers: two for the 
width in each of the two dimensions and one for the orientation. One way of spec- 
ifying these numbers is to give the so-called covariance matrix, a symmetric 2 x 2 
matrix whose elements tell us the expected uncertainty in the position, ( ( & Q ) ~ ) ,  the 
expected uncertainty in the magnitude, ((a2)), and how the uncertainty in one af- 
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fects the uncertainty in the other, (6xo6A). After doing some algebra, we find that the 
correlation term is zero, (6x06A} = 0. In other words, the reliability with which we 
can estimate the position of the delta function has no bearing on the reliability with 
which we can estimate its magnitude. Thus, in terms of the general schematic picture 
of Fig. 16, the principal axes of the likelihood probability bubble should lie along the 
A and XQ directions. We also find that the instrumental parameters T and w affect the 
reliability of the inferred magnitude and position of the delta function as follows: 

((6x0)~) oc w /T and ( ( 6 ~ ) ~ )  cx 1 /Tw . 

This raises a fundamental question: What do we mean by a figure of merit? The 
formulae above say that to improve our estimate of the position of the delta function, 
we should make the width of the Gaussian resolution function as narrow as possible, 
but to improve our estimate of its magnitude, we should make the resolution function 
as wide as possible! 

We can, of course, keep working through specific problems, but we will only 
come up with the conclusion that different questions, or different choices of hypoth- 
esis space, have different answers. So let us try to ask a generalized question. We 
accept that it will not give the exact answer in every specific case but hope that it 
will yield a sensible figure of merit for a wide range of situations. 

Let us say that the experimental parameters (moderator material, moderator tem- 
perature, flight-path length, collimation angle, and so on) all combine to give some 
resolution function R(x) (not necessarily Gaussian). The question we will ask is: 
Given that the data are the result of a convolution between the sample scattering law 
S(x) and the resolution function R(x), how reliably can we estimate the scattering 
law assuming no particular functional form for S(x)? 

Since we do not have a functional form for the scattering law, as we did before, 
an obvious hypothesis space to choose is the one defined by the values of S (x) spec- 
ified on a grid finely digitized in x. That is, we have an M -dimensional hypothesis 
space, where M is very large. The likelihood function is now a bump in a multi- 
dimensional space, and we can consider Fig. 16 as a schematic two-dimensional slice 
through that space if the axis labels are changed to read S (xi) and S (xj) instead of 
A and XQ. The spread of this multi-dimensional probability bubble about its maxi- 
mum will, of course, give us a measure of how well the data constrain the permis- 
sible scattering laws. However, since the likelihood bubble is, in general, skew with 
respect to our {S(xj)} axes, its width is difficult to describe. It is convenient, there- 
fore, to rotate our coordinate axes from the original {S(xj)} axes to another set of 
axes that lie along the principal axes of the probability bump; the spread of the bub- 
ble is then given simply by its widths along the new coordinate axes. These principal 
axes are vectors in the coordinates {S(xj)} and hence represent relative pixel heights 
in our digitized x coordinate-they are discretized functions of x. Formally, the prin- 
cipal axes are called eigenvectors or, if we go to the continuum limit by making the 
digitized grid infinitesimally fine, eigenfunctions . 

The eigenfunctions define the natural hypothesis space for our problem because 
they represent the properties of the scattering law that can be estimated independently 
of each other. If we write the required scattering law as a linear combination of the 
eigenfunctions, S(x) = aj%(x), where vj(x) are the eigenfunctions and a, are co- 
efficients (or parameters) that are now to be determined from the data, then we find 
that the reliability of our estimate of one parameter does not affect the reliability of 
our estimate of another; that is, the covariance matrix is diagonal ((6ai6aj) = 0). The 
widths of the likelihood function along the principal directions, 6aj, tell us the relia- 
bility with which the eigenfunction properties of the scattering law can be estimated; 
the widths are related to the so-called eigenvalues A by ((6aj)2) = 2/Aj. 
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RESPONSE MATCHING 

Fig. 17. The resolution function R(x) appro- 

priate to a neutron-scattering experiment at 

a spallation source is a convolution (8) of 

two response functions: the moderator line 

shape and an instrumental contribution. The 

moderator line shape (the time spectrum of 

neutrons exiting the moderator) has a sharp 

leading edge, which can be regarded as the 

rising edge of a narrow Gaussian with a 

FWHM, ~ ~ ~ d ~ ~ ~ ~ ~ ~ ,  determined by the mod- 

erator material, and a long tall that decays 

roughly exponentially with a decay constant 

r determined by the "poison" added to the 

moderator. The instrumental contribution is 

roughly Gaussian with a FWHM of Uinstmment- 

The analysis presented in the text indicates 

that uinstrument should probably be matched 

to umo~erator (rather than to the FWHM of the 

moderator line shape as a whole) to obtain 

the "best" FKx}. 

x x 
Moderator Line Shape Instrumental Contribution 

If we were to carry out the algebra for our problem, making suitable (usually 
reasonable) assumptions to obtain an analytic solution, we would find that the eigen- 
functions vu(x) and their corresponding eigenvalues Xu are given by 

qu(x) = cos(wx) and sin(wx) 

where k(w) is the Fourier transform of the resolution function R(x) and d is a mea- 
sure of the average number of counts in the data. This solution tells us that if we do 
not have a functional form for the scattering law, then we should express it in terms 
of a Fourier series (a sum of sine and cosine functions). The advantage of doing so 
is that the reliability with which we can estimate one Fourier coefficient will not af- 
fect the accuracy with which we can determine another-it is an uncorrelated space. 
Since the reliability with which we can estimate any Fourier coefficent is inversely 
proportional to the corresponding eigenvalue, ( ( 6 ~ ~ ) ~ )  = 2/Xu, we can use Xu as a 
figure of merit for inferring structure in the scattering law with detail 6x w l/w. 

The implications of this analysis for instrument design are as follows. 

A versatile figure of merit depends largely on the Fourier transform of the res- 
olution function rather than on its full width at half maximum. This result is 
illustrated in Fig. 14: The two resolution functions in Fig. 14b have the same 
full width at half maximum and the same integrated intensity, but, as shown in 
Fig. 14d, the Fourier transform of the one with the sharp edge does not decay 
as rapidly with increasing frequency w as the Fourier transform of the Gaussian 
resolution function. Resolution functions that have sharp features, therefore, al- 
low high-frequency information to be recovered reliably from the data. An elec- 
trical engineer would say that the figure of merit is governed by the bandwidth 
of the resolution function. - 

The figure of merit for a given resolution function is not constant but depends 
on the amount of detail required in the inferred scattering law. 
The background signal has not been forgotten; it enters the figure of merit 
through the dependence on average number of counts, or u2. Any long decay- 
ing tail of the resolution function reduces the figure of merit in the same way 
that the background does, since such a tail adds to the average number of counts 
but does not contribute to the Fourier term R(w) at high frequency. 
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Since the resolution function in neutron scattering depends on details of the 
spectrometer and moderator, our results suggest a potential revision of ideas on the 
design of neutron-scattering facilities. Take, for example, the matching of resolution 
elements on a neutron spectrometer at an accelerator-based source, which is illus- 
trated in Fig. 17. The resolution function for an experiment is the resultant of a con- 
volution between a roughly Gaussian instrumental contribution (flight-path length, 
collimation angle, and so on), and the moderator line shape (the time spectrum of the 
pulse of neutrons leaving the moderator). The moderator line shape has a sharp ris- 
ing edge, the sharpness of which is governed by the moderator material, and a long 
decaying tail, the decay of which is governed by the "poison" added to the modera- 
tor. The question is how to choose the width of the instrumental component so as to 
get the "best" resultant resolution function. Conventional wisdom recommends that 
we should make the width of the Gaussian-like instrumental contribution comparable 
to the width of the moderator line shape. The analysis above, however, suggests that 
following this advice could seriously impair our ability to infer (reliably) the scatter- 
ing law at high resolution and that we should probably match the width of the instru- 
mental component to the narrow width of the sharp leading edge of the moderator 
line shape. How such considerations translate into the optimal choice of collimation 
angle, of flight-path length, of moderator material, and of a moderator "poison" is the 
subject of ongoing research. i 
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